1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
| class FlattenLayer(nn.Module): def __init__(self): super(FlattenLayer, self).__init__()
def forward(self, X): return X.view(X.shape[0], -1)
class GlobalAvgPool2d(nn.Module): def __init__(self): super(GlobalAvgPool2d, self).__init__()
def forward(self, x): return F.avg_pool2d(x, kernel_size=x.size()[2:])
class Inception(nn.Module): def __init__(self, in_c, c1, c2, c3, c4): super(Inception, self).__init__() self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)
self.p2_1 = nn.Conv2d(in_c, c2[0], 1) self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1) self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)
def forward(self, x): p1 = F.relu(self.p1_1(x)) p2 = F.relu(self.p2_2(F.relu((self.p2_1(x))))) p3 = F.relu(self.p3_2(F.relu(self.p3_1(x)))) p4 = F.relu(self.p4_2(self.p4_1(x))) return torch.cat((p1, p2, p3, p4), dim=1)
class GoogleNet(nn.Module): def __init__(self, classes): self.classes = classes super(GoogleNet, self).__init__() self.b1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) self.b2 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=1), nn.Conv2d(64, 192, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) self.b3 = nn.Sequential( Inception(192, 64, (96, 128), (16, 32), 32), Inception(256, 128, (128, 192), (32, 96), 64), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) self.b4 = nn.Sequential( Inception(480, 192, (96, 208), (16, 48), 64), Inception(512, 160, (112, 224), (24, 64), 64), Inception(512, 128, (128, 256), (24, 64), 64), Inception(512, 112, (144, 288), (32, 64), 64), Inception(528, 256, (160, 320), (32, 128), 128), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) self.b5 = nn.Sequential( Inception(832, 256, (160, 320), (32, 128), 128), Inception(832, 384, (192, 384), (48, 128), 128), GlobalAvgPool2d(), nn.Dropout(0.4), FlattenLayer(), nn.Linear(1024, self.classes) ) self.net = nn.Sequential( self.b1, self.b2, self.b3, self.b4, self.b5 )
def forward(self, x): return self.net(x)
|