算法的乐趣之动态规划法
动态规划(Dynamic Programming)
动态规划(Dynamic Programming)是解决多阶段决策问题常用的最优化理论,动态规划和分治法一样,也是通过定义子问题,先求解子问题,然后在由子问题的解组合出原问题的解。它与分治法的区别是动态规划的子问题之间存在堆叠关系(递推关系式确定的递推关系)。
动态规划适合求解多阶段(状态转换)决策问题的最优解,也可用于含有线性或非线性递推关系的最优解问题,但是这些问题都必须满足最优化原理和子问题的“无后向性”。
- 最优化原理:最优化原理其实就是问题的最优子结构的性质,如果一个问题的最优子结构是不论过去状态和决策如何,对前面的决策所形成的状态而言,其后的决策必须构成最优策略。也就是说,不管之前的决策是否是最优决策,都必须保证从现在开始的决策是在之前决策基础上的最优决策,则这样的最优子结构就符合最优化原理。
- 无后向性(无后效性):所谓“无后向性”,就是当各个阶段的子问题确定以后,对于某个特定阶段的子问题来说,它之前各个阶段的子问题的决策只影响该阶段的决策,对该阶段之后的决策不产生影响。
从算法设计的角度分析,使用动态规划法一般需要四个步骤,分别是:
- 1.定义最优子问题(最优解的子结构)
- 2.定义状态(最优解的值)
- 3.定义决策和状态转换方程(定义计算最优解的值的方法)
- 3.确定边界条件
1.定义最优子问题
定义最优子问题,也就是最优解的子结构,它确定问题的优化目标以及如何决策最优解,并对决策过程划分阶段。所谓阶段,可以理解为一个问题从开始到解决需要经过的环节,这些环节前后关联。阶段划分以后,对问题的求解就变成了各个阶段分别进行最优化决策,问题的解就变成按照阶段顺序依次选择的一个决策序列。这就需要先定义状态,有了状态的定义,只要状态发生了变化,就可以认为是一个阶段。
2.定义状态
状态既是决策的对象,也是决策的结果,对于每个阶段来说,对起始状态施加决策,使得状态发生改变,得到决策的结果状态。初始状态经过每一个阶段的决策(状态改变)之后,最终得到的状态就是问题的解。当然,不是所有的决策序列施加于初始状态后都可以得到最优解,只有一个决策序列能得到最优解。
3.定义决策和状态转换方程
决策就是能使状态发生转变的选择动作,如果选择动作有多个,则决策就是取其中能使得阶段结果最优的那一个。状态转换方程是描述状态转换关系的一系列等式,也就是从 n-1 阶段到 n 阶段演化的规律。状态转换取决于子问题的堆叠方式,如果状态定义得不合适,会导致子问题之间没有重叠,也就不存在状态转换关系了。没有状态转换关系,动态规划也就没有意义了,实际算法就退化为像分治法那样的朴素递归搜索算法了。
4.确定边界条件
对于递归加备忘录方式(记忆搜索)实现的动态规划方法,边界条件实际上就是递归终结条件,无需额外的计算。对于使用递推关系直接实现的动态规划方法,需要确定状态转换方程的递推式的初始条件或边界条件,否则无法开始递推计算。
本文作者 : HeoLis
原文链接 : https://ishero.net/%E7%AE%97%E6%B3%95%E7%9A%84%E4%B9%90%E8%B6%A3%E4%B9%8B%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E6%B3%95.html
版权声明 : 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明出处!
学习、记录、分享、获得